2:21 5/1 9.

CHEMISTRY

New Syllabrus (Revie Rolg)

NORTH-EASTERN HILL UNIVERSITY SHILLONG 793022

REVISED SYLLABUS FOR THE B.Sc. PROGRAMME IN CHEMISTRY (NEHU)

(2018)

F. -

N. 4

STRUCTURE & MARKS DISTRIBUTION FOR THE NEW B.Sc. PROGRAMME IN CHEMISTRY (NEHU) (ONLY CHEMISTRY PAPERS MENTIONED)

First Semester

Total: 100 Marks

Chem EH 101: Part A Theory (Inorganic-I, Organic-I & Physical-I)	-75 marias
Part B Practical (Organic LC-I)	- 25 marks
Chem H 101: Practical (Organic LC –I)	- 25 marks
(Chem EH 101 is both Honours and Elective: Chem H 101 is purely Ho	nonars)

Second Semester

Chem EH 201: Part A Theory (Inorganic-II. Organic-II & Physical-II) Part B Practical (Physical LC-I)

Third Semester

Total: 100 Marks - 75 marks

Total: 100 Marks

- 25 marks

Total: 100 Marks Chem EH 301: Part A Theory (Inorganic-III, Organic-III & Physical-III) - 75 marks Part B Practical (Inorganic LC-I) - 25 marks

Fourth Semester

Chem EH 401: Part A Theory (Inorganic-IV, Organic-IV & Physical-IV) - 75 marks Part B Practical (Inorganic LC-II) - 25 marks

Fifth Semester

Chem H 501: Inorganic Chemistry-V

Chem H 502: Organic Chemistry-V

Chem H 503: Physical Chemistry-V

Total: 200 Marks - 50 marks - 50 marks - 50 marks - 25 marks Total: 50 marks - 25 marks

Sixth Semester

Chem H 601: Inorganic Chemistry-VI Chem H 602 Organic Chemistry-VI Chem H 603: Physical Chemistry-VI Chem H 604: Part A Practical (Inorganic LC-III) Part B Dissertation

Chem H 504: Part A Practical (Organic LC-II)

Part B Practical (Physical LC-II)

Total: 200 Marks

- 50 marks - 50 marks - 50 marks - 25 marks Total: 50 marks - 25 marks

ň

Note. H stands for Honours alone; E stands for Elective alone; EH stands for both Elective and Honours. The above assignments of Course Numbers (e.g. Chem EH 201) is only tentative. *** Internal Marks Distribution (Test 10 marks + Assignments 9 marks)

Total: 100 Marks

First Semester Chem EH 101: PART A: Theory Section 1 (Inorganic-I) Unit I

75 marks (19:56) 25 (6:19) Marks 9½ marks

a) *Structure of Atom*: Limitations of Bohr's Atomic model; idea of de- Broglie's matter waves; Heisenberg's Uncertainty principle; Schrodinger's wave equation and its importance; quantum nos; concept of wave function; physical concepts of and ²; radial and angular wave functions; shapes of s,p,d orbitals, Aufbau principle, Pauli's Exclusion Principle, Hund's Rule, electronic configuration of atoms, screening effect and effective nuclear charge, Slater's rules (no numericals), extra stability of half-filled and completely filled orbitals.

b) *Nucleus and Radioactivity* – I: Nuclear particles (neutrons, protons and qualitative idea of mesons and pisons) mass defect and nuclear binding energy (including numericals), packing fraction, natural and artificial radioactivity; radioactive disintegration series; first order rate equation of radioactive disintegration; half-life and average life period; group displacement law; unit of radioactivity; neutron proton ratio and its implications; importance of radioactive isotopes, elementary concepts of fusion and fission.

c) *Chemical periodicity*: Long form of periodic table, modern periodic law, types of elements on the basis of electronic configuration; periodic variation in properties – atomic and ionic radii; ionization enthalpy, electron gain enthalpy and electronegativity (Pauling's Mulliken's and Alfred – Rochow scale), diagonal relationship.

Unit II

9½ marks

a) *Covalent Bonding*: Basic idea of valence bond theory and its limitations; concept of hybridization of orbitals; valence shell electron pair repulsion (VSEPR) theory and shapes of molecules and ions: BeF₂, BF₃, H₃O⁺, NH₃, H₂O, H₂S,O₃, CO₂, BO₃³⁻, PCl₃, PCl₅, SF₄, SF₆, polarity of covalent bonds and dipole moment, LCAO-MO theory and its application to homonuclear diatomic molecules (H₂, N₂, O₂, O₂²⁻, O₂⁻, O₂⁺, Ne)

b) *Ionic Bonding*: Ionic structures, radius ratio effect, limitation of radius ratio rule, concept of lattice energy and Born-Haber cycle, polarizing power, polarizability of ions and Fajan's rule

c) *Bonding in metals, semiconductors and hydrogen bond*: Qualitative idea of free electron theory and band theory in solids, elementary ideas on semiconductors (n and p types), hydrogen bonding-concept and types of H- bonding - application to inorganic molecules.

Page 2 of 29

Section 2 (Organic-I)

Unit III

25 (6:19) Marks

9½ marks

(a) Structure, Bonding & Properties: Hybridisation of orbitals, implications of hybridisation on the concept of bond length, bond energy, bond angles, shape of the molecules with following examples: (i) CH₄, H₃O⁺, CH₃⁻, RNH₂; (ii) C₂H₄, CH₃⁺, BF₃, AlCl₃, Carbonyl Compounds (C = O), and (iii) C₂H₂, R-C=N, allene, ketene.

Nature of covalent bond and its orbital representation in molecules listed above.

Bronsted-Lowry and Lewis concepts of acids and bases, pK_a and pK_b concept, electronegativity, inductive effect and its role in substituted aliphatic carboxylic acids, effect of H- bonding on boiling point and solubility of organic compounds.

Conjugation, resonance, hyper-conjugation (propene and toluene), homolytic and heterolytic bond cleavage, Curly arrow rules. Types of reagents – electrophiles and nucleophiles. Reactive intermediates: carbocations, carbanions, free radicals, carbenes - stability and examples.

(b) Organic Stereochemistry-I: Concept of isomerism, types of isomerism - configurational and conformational isomerism (ethane and butane). Fischer, Newman and Sawhorse projections with suitable examples, geometrical isomerism, configuration of geometrical isomers, E and Z nomenclature, geometric isomers of oximes; optical isomerism – optical activity, chiral carbon atom, enantiomers, diastereomers, meso compounds, racemic mixture, resolution of racemic mixtures.

Unit IV

9½ marks

(a) Alkanes and Cycloalkanes: Nomenclature, methods of formation (with special reference to mechanism of Kolbe, Würtz, Würtz-Fittig, Corey-House reactions), chemical reactivity (oxidation, cracking, aromatization). Mechanism of chlorination, relative reactivity of halogens towards different types of alkanes.

General method of preparation of cycloalkanes (upto cyclohexane) and their reactions with halogens and HX. Baeyer's strain theory- its limitations and modifications.

(b) Alkenes and Alkynes: Nomenclature of alkenes, chemical reactivity, mechanisms of hydrogenation, bromination, Markownikoff's rule and anti-Markownikoff's rule, hydration, halohydration, hydroboration, oxidation, epoxidation, ozonolysis, hydroxylation, polymerization. Nomenclature, structure and bonding in alkynes, chemical reactivity, electrophilic addition reactions (halogenation, hydration, HX, HOX), ozonolysis, alkynides (Na, Gu and Ag) and polymerization; compare acidity of ethane, ethene and ethyne (Hybridisation concept).

1

Page 3 of 29

(c) Aromatic Hydrocarbons and Aromaticity: Molecular orbital picture of benzene, resonance

energy, aromaticity, Huckel's (4n+2) rule and its application to simple molecules and ions, electrophilic, substitution reactions in aromatic hydrocarbons and general pattern of the mechanism, effect of substituent groups (activating and deactivating groups, directive influence) – mechanism of nitration, sulphonation, halogenation nuclear and side chain, formylation (Gattermann and Gattermann-Koch), Friedel-Craft's alkylation and acylation.

Section 3 (Physical-I)

25 (7:18) Marks

9 Marks

Unit V

(a) Gaseous State-I: Kinetic theory of gases - postulates of kinetic theory, collisions and gas pressure, average kinetic energy, root mean square speed and absolute temperature of gas, Boltzmann constant, gas laws and kinetic theory. Real gases - deviation from ideality, compressibility factor, van der Waals equation of state, virial equation of state.

(b) Liquid State-I: Qualitative description of the structure of liquids, Physical properties of liquids - vapour pressure, surface tension, viscosity, refractive index (definitions and descripttions), Liquid crystals- elementary discussion on structure and types of liquid crystals.

Unit VI

9 marks

(a) Solid State-I: Law of constancy of interfacial angles, crystal planes, law of rational indices, Miller indices, space lattice and unit cell, packing in crystals, point defects in crystal- vacancy defect, interstitial defect, Frenkel and Schottky defect.

(b) Chemical Kinetics-I: Rate of reaction and rate constant, molecularity and order of a reaction, zero order reaction, differential and integrated forms of rate equations of first and second order reactions, pseudo-unimolecular reactions, determination of order of reactions, effect of temperature on reaction rates and energy of activation, effect of catalyst.

2

Page 4 of 29

Chem EH 101 Part B: Practical (Organic LC-I)

25 Marks (6:19)

Laboratory Course (Organic Chemistry)

Total Time Practical Exams: 6 hours

1. Qualitative Analysis

12 marks

Systematic qualitative analysis of organic compounds containing one functional group:

(a) Detection of elements (N, Cl, Br, I)

(b) Determination of one of the following functional groups (with systematic

reporting) -COOH, -NH2, -NO2, -OH (phenolic), -CHO and -CO-

(c) Preparation of the derivative

2.	Viva Voce	5 marks
3.	Laboratory Record (Internal Assessment)	2 marks

Chem H 101: Practical (Organic LC-I)

25 Marks (6:19)

12 marks

Laboratory Course (Organic Chemistry)

Total Time Practical Exams: 6 hours

1. Qualitative Analysis

Systematic qualitative analysis of organic compounds containing two functional groups:

- (a) Detection of elements (N, Cl, Br, I and S)
- (b) Determination of any two of the following functional groups present in a single organic compound (with systematic reporting)

-COOH, -OH (phenolic), -CHO, -CO-, -NH2, -NO2, -CONH2, -SO3H

- (c) Determination of the melting point/boiling point of the compound
- (d) Identification of the compound with help of a reference book
- (e) Preparation of the derivative and determination of its melting point

2.	Viva Voce		5 1	marks
3.	Laboratory Record (Internal Assessment)	2	2	marks
			·	

Note: Courses Chem EH 101 Part B and Chem H 101 have different question papers.

Page 5 of 29

.

2

Chem EH 101 Part B: Practical (Organic LC-I)

Laboratory Course (Organic Chemistry)

Total Time Practical Exams: 6 hours

1. Qualitative Analysis

Systematic qualitative analysis of organic compounds containing one functional group:

(a) Detection of elements (N, Cl, Br, I)

(b) Determination of one of the following functional groups (with systematic

reporting) -COOH, -NH2, -NO2, -OH (phenolic), -CHO and -CO-

(c) Preparation of the derivative

2.	Viva Voce	5 marks	
3.	Laboratory Record (Internal Assessment)	2 marks	

Chem H 101: Practical (Organic LC-I)

Laboratory Course (Organic Chemistry)

Total Time Practical Exams: 6 hours

1. Qualitative Analysis

Systematic qualitative analysis of organic compounds containing two functional groups:

(a) Detection of elements (N, Cl, Br, I and S)

(b) Determination of any two of the following functional groups present in a single organic compound (with systematic reporting)

-COOH, -OH (phenolic), -CHO, -CO-, -NH2, -NO2, -CONH2, -SO3H

(c) Determination of the melting point/boiling point of the compound

(d) Identification of the compound with help of a reference book

(e) Preparation of the derivative and determination of its melting point

2. Viva Voce5 marks3. Laboratory Record (Internal Assessment)?2 marks

Note: Courses Chem EH 101 Part B and Chem H 101 have different question papers.

25 Marks (6:19)

2

12 marks

12 marks

25 Marks (6:19)

Second Semester

Chem EH 201:

PART A Inorganic, Organic & Physical Theory Section 1 (Inorganic)

Unit I

a) *Principles of qualitative and quantitative analysis*: Solubility product and its applications in Group separations of cations (numericals on solubility product), Volumetric analysis -

standard solutions, primary standards, expressing concentrations of standard solutions, redox titrations (potassium permanganate, potassium dichromate, sodium thiosulphate and iodine) iodometric and iodimetric titrations, acid-base indicators and its theory

b) *Acid-base Concept* : Arrhenius and Bronsted -Lowry concept, the solvent system (Franklin) concept and its limitation, Lewis concept, effect of solvent on relative strengths of acids and bases – leveling effect, relative strengths of acids and bases (pKa and pH concept), SHAB principle.

Unit II

9 ½ marks

a) *Redox reactions* : Electronic concepts of oxidation and reduction, oxidation number, common oxidants and reductants, balancing of redox reactions by ion electron method, calculation of equivalent weights of oxidants and reductants, standard electrode potential, electrochemical series and its application.

b) *Some concepts of metallurgy* : Minerals and ores, principles and methods of extraction - concentration, oxidation, reduction, electrolytic method and refining, occurrence and principles of extraction of aluminium, copper and iron.

c) Industrial Chemistry :

i) Fertilizers – Nitrogenous fertilizer, manufacture of ammonia and urea, phosphatic fertilizerscalcium superphosphate and NPK fertilizers

ii)Cement- constituents, manufacture and setting process, role of gypsum.

Total:100 Marks

75 marks (19:56)

25 (6:19) marks

9 ½ marks

Section 2 (Organic)

25 (6:19) Marks

Unit III

9½ marks

(a) *Nucleophilic Substitution Reactions*: Nucleophile, ambident nucleophile, S_N^1 , S_N^2 , S_N^i , factors affecting substitution reactions (structure of substrate, nature of nucleophile, solvent, role of leaving group), mechanism and stereochemistry of substitution reactions difference between nucleophile and bases.

(b) *Elimination reactions:* E^1 , E^2 , E^1cB mechanisms, orientation in elimination reactions (Saytzeff's and Hoffmann's rules).

(c) Alkyl Halides: Preparation and reactions (hydrogenolysis, aqueous and alcoholic KOH, NH₃, carbon nucleophiles, sulphur nucleophiles, KCN, AgCN, KNO₂, AgNO₂, RCOOAg, RONa, Mg, Li, Na).

(c) Aromatic Halogen Compounds: Introduction, preparation and chemical reactivity, nuclear and side chain halogenation, electrophilic and nucleophilic substitution in aromatic halogen compounds (bimolecular displacement, benzyne mechanism).

Unit IV

91/2 marks

(a) *Alcohols*: Classification and nomenclature, method of preparation (hydration, hydroborationoxidation and oxymercuration-reduction, reaction of alcohols (acidic nature, esterification) distinction between primary, secondary and tertiary alcohols (Victor Meyer's test, Lucas test,

Oxidation by $K_2Cr_2O_7$ and metallic Cu).

Glycol: Preparation from alkenes using KMnO₄ and from epoxides, chemical reactions of glycol (HNO₃, HCl, PX₃, Oxidation by lead tetraacetate and HIO₄).

Glycerol: Preparation from oils/fats, reactions (HNO3, HI, oxalic acid, KHSO4)

(b) *Phenols*: Nomenclature, Preparation (benzene diazonium salts and benzene sulphonic acids), physical properties and acidic character, comparison of acid strength of phenols with alcohols, effect of substituents on acidity of phenols, chemical reactions: nitration, halogenation,

sulphonation, Kolbe's reaction, Reimer-Tiemann reaction, phenol-formaldehyde resin.

(c) *Aldehydes and Ketones*: Nomenclature and structure of the carbonyl group, method of preparation of aldehydes and ketones (from alcohols, acid chlorides, Rosenmund reduction,

Gattermann-Koch), chemical reactivity of carbonyl group, mechanism of nucleophilic additions and addition-elimination reactions with HCN, NaHSO₃, NH₂OH, NH₂-NH₂, C₆H₅NHNH₂, NH₂CONHNH₂) and Cannizzaro reaction; acidity of α -hydrogen in carbonyl compounds and formation of enolates, aldol condensation, Perkin reaction and reactions with Grignard reagents,

2

Page 7 of 29

benzoin condensation, reduction and oxidation reactions (Clemmensen and Wolff-Kishner reductions).

Section 3 (Physical)

Unit V

25 (7:18) Marks

9 marks

(a) Thermodynamics-I: Definition of thermodynamic terms- system and surrounding, types of systems, intensive and extensive variables, types of processes- isothermal, adiabatic, isobaric, reversible, irreversible and cyclic processes; Thermodynamic functions- state variables and exact differentials, concept of heat and work, path functions and inexact differentials, zeroth law of thermodynamics, work done during reversible volume change of ideal gas. First law of thermodynamics: Statement, internal energy, enthalpy, heat capacity at constant pressure (C_p) and volume (C_v), relation between C_p and C_v . Limitations of first law, spontaneous processes, statements of second law. Joule-Thomson coefficient and inversion temperature.

(b) Macromolecules: Characteristics of macromolecules; degree of polymerization; concepts of number and weight average molecular mass; determination of molecular mass by osmometry and viscometry.

Unit VI

9 marks

(a) Thermochemistry: Exothermic and endothermic reactions, Hess's law of constant heat summation, enthalpy of formation, standard state, enthalpy of combustion, enthalpy of neutralization, enthalpy of solution, enthalpy of dilution, Kirchoff's equations- influence of temperature on ΔH and ΔU of a reaction

(b) Adsorption and Surface Phenomena: Physisorption and chemisorption, adsorption isotherms, derivation and application of Langmuir adsorption isotherm, Freundlich adsorption isotherm.

Page 8 of 29

2

Chem EH 201 Part B Practical (Physical LC-I)

ñ ..

A

1.

2

R -1

Laboratory Course (Physical)

The following experiments are to be carried out in the class. In the examination, each student should be asked to do any **one** experiment from this list given below.

List of Experiments

- (1) Determination of the heat of neutralization of a strong acid by a strong base.
- (2) Determination of molecular weight by Rast's method
- (3) Study of the heat of dilution of H₂SO₄ and then to determine the strength of an unknown acid.
- (4) Determination of the velocity constant of the decomposition of hydrogen peroxide in presence of ferric chloride as catalyst by titrating against KMnO4.
- (5) Determination of the solubility of BaCl₂/NaCl at two different temperatures and to determine the heat of solution.
- (6) Determination of the velocity constant of the hydrolysis of methyl acetate catalysed by an acid.

Assignment of Marks	•	
Viva Voce	: 05 Marks	
Laboratory Record	: 02 Marks	
Marks Experiment	: 12 Marks	
		14

Third Semester

Chem EH 301:

PART A Inorganic, Organic & Physical Theory

Section 1 (Inorganic)

Unit I: s- and p-Block Elements and Their Compounds

Group discussion of the elements with respect to their position in the periodic table. electronic configuration, atomic and ionic radii, ionization enthalpy, electron gain enthalpy, electronegativity, oxidation states, variation of acidic and basic properties of their oxides and oxyacids, inert -pair effect and catenation.

Preparation, important reactions, structure and use of the following compounds : sodium thiosulphate, potassium iodide, boric acid, aluminium chloride, lithium aluminium hydride, hydrazine and lead tetracetate.

Unit II: d- and f-Block Elements

characteristic Electronic configuration of d-block elements, transition metals - definition and features of transition elements, relative stability of oxidation states, variation of properties in first, second and third row transition metals.

Electronic configuration of lanthanides and actinides, comparison of their oxidation states, synthetic elements (synthesis of Np and Pu), variation in their atomic and ionic radii - lanthanide contraction, difficulty in the separation of lanthanides - ion exchange method of separation.

Preparation, important reactions, structures and uses of nickel tetracarbonyl, potassium ferricyanide, potassium dichromate, potassium permanganate and uranium hexafluoride.

Section 2 (Organic)

Unit IV

(a) Carboxylic Acids and their Derivatives: Nomenclature, effect of substituents on the acidity of aliphatic and aromatic carboxylic acids, methods of preparation (oxidation of alcohols and aldehydes, acid hydrolysis of nitriles), reactions: reduction using LiAlH₄, formation of esters, acid chlorides, anhydrides and amides, comparison of the chemical reactivity of these derivatives.

(b) Organometallic Compounds-I: Grignard reagents: Synthesis of alkanes, alcohols, acids, aldehydes, ketones, amines with mechanism. Organolithium compounds: preparation and reactions with H₂O, CO₂ & epoxide.

Total: 100 Marks

75 marks (19:56)

25 (7:18) marks

9 marks

Page 10 of 29

9 marks

25 (6:19) Marks

91/2 marks

(c) Active Methylene Compounds: Active methylene group, examples of active methylene compounds, tautomerism, difference between tautomerism and resonance (keto-enol tautomerism). use of ethyl acetoacetate and diethyl malonate (synthesis of butanoic acid, succinic acid, cinnamic acid, crotonic acid, ethyl methyl ketone, barbituric acid).

Unit V

91/2 marks

(a) *Nitro Compounds (Aliphatic and Aromatic)*: Preparation, properties (aliphatic)- α-hydrogen acidity, halogenation, reaction with NaOH, HNO₂, hydrolysis, carbonyl compounds.

(b) Amines (Aliphatic and Aromatic): Nomenclature, preparation of amines (reduction of nitro compounds and Gabriel phthalimide synthesis), basicity and effect of substituents on basicity, chemical reactivity- acylation, action of nitrous acid, action of CS_2 , carbyl amine reaction, condensation with carbonyl groups and ring substitution. Distinction between primary, secondary and tertiary amines (Hinsberg and Hoffmann).

(c) *Diazo Compounds*: Preparation and stability of diazo compounds (aliphatic and aromatic). Reactions of benzene diazonium chloride (Sandmeyer, diazo coupling and arylation).

Section 3 (Physical)

25 (6:19) Marks

Unit VI

10 marks

(a) Thermodynamics-II: Carnot cycle and its efficiency, Carnot's theorem, Entropy (S) as a state function, entropy changes of ideal gases in different processes. Gibbs function (G) and Helmholtz function (A), criteria for thermodynamic equilibrium and spontaneity, variation G and A with pressure, volume and temperature, Gibbs-Helmholtz equation, Clausius-Clapeyron equation, Trouton's rule.

(b) Chemical Equilibrium: Law of mass action, equilibrium constant (K) from thermo-dynamic considerations, temperature and pressure dependence of equilibrium constants (K_p and K_c) – van't Hoff equation, relation of K_p and K_c , equilibria in homogeneous and heterogeneous systems, Le Chatelier's principle.

Unit VII

9 marks

(b) Dilute Solutions: Colligative properties, Raoult's law and Henry's law, relative lowering of vapour pressure, elevation in boiling point, depression in freezing point, osmosis, osmotic pressure and its determination, relation between colligative properties and molecular mass, determination of molecular mass, van't Hoff factor, abnormal molar mass, Reverse osmosis and its applications.

A

Page 11 of 29

(b) Colloids: Classification of colloids, preparation of colloids – peptisation, Bredig's method and condensation methods, purification of colloids, properties of colloids – Tyndall effect, Brownian movement, electrophoresis and electro-osmosis, protective colloids and gold number.

Chem EH 301:

Part B Practical (Inorganic LC-I)

25 marks (6:19)

Laboratory Course (Inorganic)

Total Practical Examination Time: 6 hours

Part I: Qualitative Analysis *12 marks* Inorganic Mixtures containing five radicals/ions to be analyzed – one of the radicals /ions must be interfering (borate, chromate or phosphate). Following ions/radicals to be included:

 $\begin{array}{l} Ag^{+}, Pb^{2+}, Hg^{2+}, Hg^{2+}, Cu^{2+}, Cd^{2+}, Bi^{3+}, As^{3+}, Sb^{3+}, Sn^{2+}, Sn^{4+}, Fe^{2+}, Fe^{3+}, Al^{3+}, Ba^{2+}, \\ Cr^{3+}, Zn^{2+}, Mn^{2+}, Co^{2+}, Ni^{2+}, Ca^{2+}, Sr^{2+}, Mg^{2+}, K^{+}, NH_{4}^{+}. \\ Cl^{-}, Br^{-}, I^{-}, SO_{4}^{2-}, NO_{3}^{-}, BO_{3}^{-3-}, PO_{4}^{-3-}, CrO_{4}^{2-} \end{array}$

Part II:

(a) Sessional Work	:	2 marks	
(b) Viva Voce	:	5 marks	

Fourth Semester

Chem EH 401:

Unit I

PART A Inorganic, Organic & Physical Theory

Section I (Inorganic)

75 marks (19:56)

25 (7:18) Marks

Total: 100 Marks

9 marks

9 marks

a) Organometallic Chemistry I: definition and classification, synthesis, properties, nature of bonds, structure and application of one organometallic compound each of lithium (Methyl Lithium), magnesium (Grignard reagent).

b) *Inorganic polymers*: General properties of inorganic polymers and distinction from organic polymers, synthesis, structural aspects and uses of silicones, phosphonitrilic halides, phosphazenes and tetrasulphurtetranitriride.

c) *Interhalogens, Polyhalides and Pseudohalides* – types of interhalogens, and their reactivity, polyhalides of iodine, definition of pseudohalides - study of CN, SCN, structure of ClF₃, BrF₃, BrF₅, and IF₇.

Unit II

Coordination Chemistry

Werner's Coordination theory, coordination number, ligands and their classification, chelation, applications of chelate formation, nomenclature of coordination compounds, effective atomic number rule, isomerism in coordination compounds, geometrical and optical isomerism in 4-and 6-coordinate complexes; Sidgwick's effective atomic number rule; stereochemistry of complexes with coordination numbers 4 and 6 bonding in transition metal complexes : valence bond theory and elementary idea of crystal field theory for octahedral and tetrahedral complexes.

Section II (Organic)

25 (6:19) Marks

91/2 marks

Unit III

(a) *Carbohydrates*: Classification, monosaccharides-Glucose and fructose, Fischer Projection formula, Reaction of glucose and fructose with Br₂-water, HCN, Tollen's reagent, Fehling's solution, hydroxylamine, phenylhydrazine, HNO₃ and osazone formation. Determination of ring size by HIO₄ method. Haworth projection formula, conformational structures of glucose and fructose. Epimerization, inter-conversion of glucose and fructose. Ascending (Kiliani) and descending series (Wohl). **Disaccharides:** Sucrose and maltose, elucidation of structure, hydrolysis, reducing/non-reducing, polysaccharides: structure of cellulose, starch (details not required).

(b) Amino Acids: Classification, synthesis from a-haloacids and Gabriel syntheses of glycine,

n

alanine, Page

13 of 29

phenyl alanine; glutamic and aspartic acids. Physical properties, isoelectric points and zwitterionic structure.

(c) Urea: Preparation of urea, reactions of urea with HNO₃, H₂O, HNO₂, NaOBr, CH₃COCl, C₂H₅OH, NH₂NH₂ and diethyl malonate, formation of biuret.

(d) *Drugs*: Classification of drugs as antipyretic, analgesic, antibacterial, antiviral, antibiotic, sulpha drugs and tranquilizer with one example each. Synthesis and use of aspirin, paracetamol, sulphaguanidine, barbituric acid.

Unit IV

9½ marks

(a) *Heterocyclic Compounds-I:* Introduction; molecular orbital picture, aromatic characteristics and resonance, preparation (Paal-Knorr synthesis, synthesis of furan from pentose and pyrrole from furan) comparison of chemical reactivity (Diels Alder reaction and diazo coupling), electrophilic substitution reactions (nitration, sulphonation, Friedel-Crafts) of pyrrole, furan and thiophene. Structure, synthesis (Hantzsch synthesis) and reactions of pyridine (electrophilic, nucleophilic substitutions), comparative basicity of pyrrole/ pyridine, pyrrole/ pyrrolidine and pyridine/ piperidine.

(b) *Fats, Oils, Soaps and Detergents:* Animal and vegetable oils, drying and non-drying oils, hydrogenation, iodine value, RM value and saponification value, soaps and detergents, mechanism of cleansing action of soap and detergents.

(c) *Dyes*: Relationship between colour and constitution, chromophore and auxochrome, classification of dyes (based on structure and application), syntheses of methyl orange, Bismarck brown, Malachite green and phenolphthalein.

Section III (Physical)

25 (6:19) Marks

Unit V

9½ marks

1

(a) *Ionic Equilibrium:* Arrhenius theory of electrolyte dissociation and its limitations. Ostwald's dilution law and its uses, dissociation equilibria of weakelectrolytes, dissociation constant of weak acids (Ka), ionic product of water (Kw), hydrogen ion

concentration and pH scale, buffer solutions and buffer activity, hydrolysis constant (Kb),relation between Ka, Kw and Kb, derivation of hydrolysis constant for salts of (i) strong acid and weak base, (ii) weak acid and strong base and (iii) weak acid and weak base, solubility product, common ion effect.

ð,

Page 14 of 29

(b) Electrochemistry-I: Electrical transport –conduction in metals and in electrolyte solutions, specific conductance, equivalent and molar conductances and their determination, variation of equivalent and specific conductance with concentration of strong and weak electrolytes. Migration of ions and Kohlrausch law, transport numbers and their determination using Hittorf's and moving boundary methods. Conductometric titrations (acids – bases)

Unit VI

9½ marks

(a) *Electrochemistry-II*: Electrochemical cells. Half cells: types and examples; types of reversible electrodes; Electrode reactions; Nernst equation and standard electrode potentials; reference electrodes (Hydrogen and calomel electrodes); sign conventions; electrochemical series.

(b) Phase Equilibria: Phase rule and meaning of the terms phase, components and degrees of freedom, equilibrium between phases, phase diagram for one component systems (water and sulphur systems), Typical phase diagrams of two component systems involving eutectic (KIH₂O), congruent (phenol-aniline) and incongruent (NaCl-H₂O) melting points. Liquid-liquid mixtures, fractional distillation of binary miscible liquids, azeotropes (ethanol-water system), partial miscibility of liquids, lower and upper critical solution temperatures (triethylamine-water, phenol-water and nicotine-water systems), steam distillation, Nernst distribution law – derivation and its application.

Chem EH 401

Part B Practical (Inorganic LC-II)

Laboratory Course (Inorganic)

Total Practical Examination Time: 6 hours

Part I: Quantitative Analysis

Volumetric Estimation: Redox titration involving potassium permanganate, and potassium dichromate for the estimation of Fe^{2+} , Fe^{3+} and Ca^{2+} and iodometric estimation of Cu^{2+} .

Part II:

(a) Sessional Work: 2 Marks

(b) Viva Voce: 5 Marks

25 marks (6:19)

12 marks

Page 15 of 29

10

Total: 200 Marks

Fifth Semester

Chem H 501:

Inorganic Chemistry-V

Unit I

50 marks (12:38)

Molecular Symmetry : Symmetry elements and symmetry operations, symmetry planes and reflections, inversion centre, proper axis and proper rotations, improper axis and improper rotations, molecular point groups, systematic classification of molecules into point groups with examples (i) linear molecules ($C_{\alpha\nu}$, $D_{\alpha h}$) ii) molecules with no C_n or S_n (C_s and C_1 only), (iii) molecules with cubic point group (T_d and O_h), (iv) H₂O, NH₃, XeOF₄, XeF₄, PF₅, B₂H₆, cyclohexane (chair and boat forms)

Unit II

8 marks

7 marks

(a) *Complexometric titration* (using EDTA), metal ion indicators, masking and demasking reagents; principles of argentometric titrations, estimation of chloride using adsorption indicators; principles of gravimetric estimation of chloride, theory of precipitation, co-precipitation, post-precipitation and digestion of the precipitate.

(b) *Error Analysis* : Significant figures, errors (determinate and indeterminate), accuracy and precision, normal distribution of indeterminate errors, propagation of errors – mean and standard deviations, rejection of data – the F-test, t –test and Q-test.

(c) Organic Reagents in Inorganic Analysis: Basic qualities of the reagents and conditions, advantages of organic precipitants and their limitations, study of oxine, α -nitroso β -napthol, cupferron, cupron, and dimethylglyoxime.

Unit III

8 marks

Nucleus and Radioactivity –II: Types of radioactive decay, radioactive equilibrium, spontaneous fission, nuclear reactions, Q value, principles of separation of isotopes - gaseous diffusion, electrolysis and electromagnetic separation methods, application of radioisotopes as tracers, detection and measurement of radioactivity (GM counter)

Stability of nucleus and nuclear forces, magic number concept, nuclear binding energy, Basic principles and types of nuclear reactors.

Unit IV

7 marks

Crystal Field Theory (CFT): d-orbital splitting in electrostatic field (octahedral, tetrahedral and affecting crystal field splitting energy (10Dq value) and spectrochemical series, Structural and thermodynamic effects of d-orbital splitting, variation of ionic radii, Jahn – Teller effect, hydration and lattice energies of the first row transition metal ions, octahedral vs tetrahedral coordination, adjusted CFT and molecular orbital theory for octahedral complexes.

Page 16 of 29

Unit V

8 marks

Magnetochemistry: Explanations of diamagnetism , paramagnetism , ferromagnetism and antiferromagnetism, origin of paramagnetic moment , electron spin moment and orbital angular moment, magnetic susceptibility, Curie Law, Curie- Weiss law , Bohr magneton , magnetic susceptibility measurement by Gouy and Faraday methods, explanation of magnetic behavior of $K_4[Fe(CN)_6], K_3[Fe(CN)_6], [Co(NH_3)_6] Cl_6, K_2[Ni (CN)_4], K_3[CoF_6], K_3[MnF_6], Ni(CO)_4.$

Chem H 502:

Organic Chemistry

50 Marks (13:37)

Unit I

9 marks

(a) *Polynuclear Aromatic Hydrocarbons*: Introduction; molecular orbital structure of naphthalene; resonance; Preparations, reactions, mechanism and orientation of electrophilic substitution.

Preparations and reactions of α - and β -naphthols (azo-coupling, reactions with HNO₂ and FeCl₃. Preparation and reactions of anthracene.

(b) *Peptides, Proteins and Vitamins:* (i) *Peptides* – definition and preparation of di- and tripeptides from α -amino acids. (ii) *Proteins* - introduction, classification, primary, secondary, tertiary and quart-ernary structures of proteins, α - and β -proteins, helical and sheet structures.

(*iii*) Vitamins – definition, classification and biological importance of vitamins. Carotenoids – occurrence, isolation and synthesis, β -carotene as a source of vitamin A₁, synthesis of vitamin A₁ and ascorbic acid.

Unit II

9 marks

(a) Organic Stereochemistry-II: Nomenclature of enantiomers (R and S); relative and absolute configuration; inversion, retention, conformation of cyclic compounds – cyclohexane, mono-substituted and disubstituted cyclohexanes (1,2-, 1,3-, 1,4-) with reference to their relative stability both Newman and chair form. Stereochemical aspects of addition of bromine to alkenes.

(b) Introduction to Dienes: Conjugated, isolated and cumulated dienes (allenes); preparations and reactions of conjugated dienes (1,3-butadiene and isoprene). Addition reaction of 1,3-dienes (1,2 and 1,4 addition).

(c) *Polymers*: Types of polymers and polymerization processes. Addition (chain-growth) polymerization; free radical vinyl polymerization; ionic vinyl polymerization [Ziegler–Natta

2

Page 17 of 29

polymerisation]. Condensation (step-growth) polymerization, polyesters (Dacron), polyamides (Nylon-6, Nylon-6,6), urea-formaldehyde resins (Bakelite), polyurethanes. Natural and synthetic rubbers (Neoprene, Buna-S, Butyl rubber).

Unit III

10 marks

(a) Introduction to Organic Synthesis: Formation of carbon-carbon bond, electrophilic and nucleophilic carbon species, acid-assisted reaction (Friedel Crafts alkylation and acylation, Gatterman-Koch formylation), base-assisted condensations (Knoevenagel, Michael, Wittig reaction, Claisen reaction, Claisen-Schmidt reaction, Mannich reaction).

(b) *Rearrangements*: Carbocation rearrangements – pinacole-pinacolone, Wagner-Meerwein, dienone-phenol. Beckmann, Wolff, Hofmann, Curtius, Lossen, Schmidt, benzil-benzilic acid, benzidine-semidene, Favorskii, Fries and Claisen rearrangements.

Unit IV

9 marks

(a) Heterocyclic Compounds-II: Introduction to condensed five- and six-membered heterocycles, preparation and reactions of indole, quinoline and isoquinoline with special reference to Fischer-Indole synthesis, Skraup and Bischler-Napieralski syntheses.

(b) *Green Chemistry*: Definition, goals, principles and techniques (brief discussions); Solvent free reactions, Microwave assisted reactions, (their advantages over conventional method with examples).

(c) Inorganic Reagents in Organic Synthesis: NaBH₄, LiAlH₄, B₂H₆, Na/liq.NH₃, aluminium isopropoxide, KMnO₄, K₂Cr₂O₇, HIO₄, Lead tetraacetate, peracids.

Page 18 of 29

Chem H 503:

Physical Chemistry

Unit I: Gaseous State-II

Maxwell's distribution law of molecular speeds, molecular speeds and energy distribution as a function of temperature, calculation of the most probable, average and root mean square speeds of molecules, Maxwell-Boltzmann distribution, degrees of freedom of motion, principle of equipartition of energy, collision diameter, collision cross-section, collision frequency and mean free path, viscosity of gases, Boyle temperature, critical phenomena-critical constants, p-v isotherm of carbon dioxide, continuity of state, law of corresponding states and reduced equation of state, vapour density and limiting density.

Unit II: Physical Properties and molecular structure

Determination of surface tension, viscosity and refractive index of liquids. Physical properties and chemical constitution- additive and constitutive properties, molar volume, parachor, specific and molar refraction. Polar and non-polar liquids, dielectric constant, dipole moment, structure of molecules, polarization, Clausius-Mossotti equation.Dipole induced dipole and vander Waals interactions in molecules.

Unit III: Solid State-II

Symmetry elements in crystals-plane of symmetry, axis of symmetry, centre of symmetry, seven crystal systems, Law of symmetry, Bravais lattices, X-ray diffraction of crystals, Bragg's law, crystal structure determination-Laue's method and powder method.

Unit IV: Chemical Kinetics-II

Catalyzed reactions – homogeneous catalysis, acid-base catalysis, enzyme catalysis - Michaelis-Menten equation; Theory of Reaction rates – collision theory, transition state theory of unimolecular reaction.

Complex reactions – opposite, parallel, consecutive and chain reactions, rate determining step, steady state approximation and derivation of rate laws of complex reactions.

Unit V: Molecular Spectroscopy

Introduction: electromagnetic radiation, regions of the spectrum, basic features of different spectrometers, statement of the Born-Oppenheimer approximation, degrees of freedom. Rotational and Vibrational spectra of diatomic molecules: frequency expressions, selection rules and applications to estimate molecular parameters; isotope effect in vibrational spectrum. Beer-Lambert's law, Einstein's law.

3

50 Marks (13:37)

9 marks

6 marks

7 marks

7 marks

Page 19 of 29

8 marks

Chem H 504 PART A Practical (Organic LC-II)

Laboratory Course (Organic)

Total Time for Practical Exams: 6 hours

1. Separation of Mixtures

(a) Separation of binary organic mixtures based on acid-base concept

(b) Determination of melting points

2. Organic Preparation

(a) Preparation of the following compounds

(b) Phthalimide (from phthalic anhydride)

(c) m-Dinitrobenzene (from benzene)

(d) Picric acid (from phenol)

(e) p-Bromoacetanilide (from acetanilide)

(f) Benzilic acid (from benzil)

(g) Methyl Orange (from sulphanilic acid)

4 Viva Voce

5. Laboratory Record (Internal Assessment)

6 marks

6 marks

5 marks

2 marks

Page 20 of 29

25 Marks (6:19)

ñ - :

Chem H 504 PART B Practical (Physical LC-II)

Laboratory Course (Physical)

Total Practical Examination Time: 6 hours

The following experiments are to be carried out in the class. In the examination, each student should be asked to do any **one** experiment

List of Experiments

- (a) Conductometric titrations of an acid by a base.
- (b) Acid-base titration using potentiometer.
- (c) Verification of Beer-Lambert's law using copper sulfate or K₂Cr₂O₇ solution colorimetrically and determination of the concentration of the supplied solution
- (d) Determination of velocity constant for the decomposition of hydrogen peroxide using ferric chloride as catalyst; and to determine the activation energy.
- (e) Determination of the heat of solution of solid calcium chloride and to determine lattice with the help of Born-Haber cycle.
- (f) Determination of the critical solution temperature of the phenol-water system.
- (g) Study on the kinetics of the reaction between potassium persulfate and potassium iodide at two temperatures with determination of activation energy
- (h) Study of the adsorption of oxalic acid on charcoal and verification of Freundlich's adsorption isotherm.
- (i) Determination of surface tension of a liquid/solution by drop-weight method.
- (j) To obtain the viscosity-composition (v/v) curve of ethanol-water/ glycerol- water/ methanolwater system and to determine the composition (v/v) of a given unknown mixture.
- (k) Determination of partition coefficient of a solute between two immiscible solvents (e.g. iodine in water/organic solvent; benzoic acid in water/benzene).
- (l) Determination of pKa value of different sets of buffer by pH-metric titration using glass electrode

7

Distribution of marks:

Viva Voce	: 05 Marks
Laboratory Record	: 02 Marks
Experiment	: 12 Marks

Page 21 of 29

Total: 200 Marks

Sixth Semester Chem H 601: Inorganic Chemistry - VI

Unit I: Organometallic Chemistry-II

Synthesis, properties, nature of bonds, structure and application of organometallic compounds of Ethium (alkvl and aryl), magnesium (RMgX and MgR₂), iron (ferrocene) and tin (R₃SnX, RaSnX2 types), methyl- ethylenic complexes and homogenous hydrogenation

z-acid ligands, mononuclear and dinuclear carbonyls and nitrosyls and the nature of bonding in them - their uses in metallurgy, important applications of organometallic compounds in beterogeneous catalysis - hydrogenation of alkenes using Wilkinson's catalyst and synthesis of acetic acid using rhodium carbonyl iodide catalyst.

Unit II: Bioinorganic Chemistry

Essential and trace elements in biological processes, criteria of essential elements, metalloporphyrins, structure and functions of haemoglobin , myoglobin and chlorophyll, role of Fe and Mg in haemoglobin and chlorophyll, role of Co in vitamin B12, Carbonic anhydrase, its characteristics and functions. Non-complexing cations in biochemical processes

- Na⁺ - K⁺ pump; toxic effects of metal ions with reference to mereury, lead, beryllium and eleminium; deficiency of Fe, Ca, Mg and iodine; Platinum complexes as anticancer drugs.

Unit III: Spectroscopic Methods in Inorganic Chemistry

Application of the following techniques for inorganic and Coordination compounds :

2) UV-Visible Spectroscopy: Free ion terms and their splitting in octahedral symmetry , Selection rules, Orgel diagrams for octahedral / tetrahedral complexes (d^1 , d^2 , d^8 and d^9 systems).

>) IR Spectroscopy: Basic principles , spectral studies of coordination compounds containing following molecules or ions as ligands : H_2O , CN, CO, SO_4^{2-} and halides (F, Cl, Br, I)

Unit IV: Reactivity of Coordination Compounds

Thermodynamic stability; Stepwise formation constant, kinetic lability and inertness, Mechanisms of ligand displacement reactions in octahedral and square planar complexes, the trans effect, determination of composition of complexes by spectrophotometric method.

Unit V: Nanomaterials

General introduction to nanomaterials and emergence of nanotechnology, types of nanomaterials, synthesis of nanoparticles of gold, platinum and silver, properties of nanoparticles (optical, semiconductor, electrical and magnetic), important applications of nanoparticles.

3

10 marks

6 marks

6 marks

6 marks

50 marks (12:38) 10 marks

Chem H 602:

Organic Chemistry - VI

Unit I

(a) *Natural Products*: (i) Terpenoids: Introduction, isoprene rule, classification, structural elucidation and syntheses of citral and geraniol. (ii) Alkaloids: Introduction, classification, physiological action, syntheses of nicotine and cocaine.

(b) *Topics in Biological Chemistry:* (*i*) *Enzymes* – Introduction, nomenclature and characteristics. Mechanism of enzyme action (a general picture); mechanism of action of the enzyme chymotripsin as a peptidase.; co-enzyme, co-enzymes derived from niacin and thiamine, lipoic acid, co-enzyme A, energy production in biological system (role of ATP and ATP-ADP cycle), glycolysis and tricarboxylic acid cycle. (*ii*) *Nucleic acids*: Structure of purine and pyrimidine bases in nucleic acid (adenine, guanine, cytosine, uracil and thiamine) [no synthesis]. Structure of nucleosides, nucleotides and DNA, replication of DNA.

Unit II

Organic Photochemistry: Excitation of molecules, Franck-Condon principle, dissipation of energy, Jablonski diagram, singlet-triplet states, fluorescence and phosphorescence, photosensitization and quenching, quantum yield. Introduction to photochemical reactions of carbonyl compounds, photo-reduction. Norrish Type I and Type II cleavages. Paterno-Buchi reaction.

Unit III

9 marks

6 marks

Pericyclic Reactions: Definition and scope of pericyclic reactions. (i) Electrocyclic reactions – stereochemistry, conrotatory and disrotatory ring closures and ring opening (simple examples like 1,4-disubstituted-1,3-buta-diene; 1,6-disubstituted-1,3,5-hexatriene; 1,8-disubstituted-1,3,5,7-octatetraene). Woodward-Hoffmann rules for electrocyclic reactions, frontier molecular orbital theory (correlation diagram not required). (ii) Cycloaddition reactions - Definition of dienes and dienophiles, supra-supra and antara-antara modes of cycloadditions ($\pi_s^4 + \pi_s^2$, $\pi_s^4 + \pi_a^2$, $\pi_s^2 + \pi_s^2$, $\pi_s^2 + \pi_a^2$, $\pi_s^2 + \pi$

Unit IV Spectroscopy for Structural Analysis

(a) Ultraviolet and Visible Spectroscopy – Basic principles of UV and visible spectroscopy, application to conjugated polyenes, carbonyl compounds and α , β -unsaturated carbonyl compounds, Woodward-Fieser rules.

Page 23 of 29

12 marks

50 Marks (13:37)

10 marks

(b) *Infrared Spectroscopy* - Basic principles, characteristic vibrational frequencies of carbonyl compounds, hydroxyl and amino compounds.

(c) Nuclear Magnetic Resonance Spectroscopy - Basic principles, chemical shifts, shielding and deshielding of protons, chemically equivalent protons, PMR- peak area and proton counting. Characteristics protons - chemical shifts and coupling constants: for ethyl bromide, toluene, p-

Mass Spectrometry – Basic principles, molecular ion peak, base peak and metastable ion, ingmentation pattern, N-Rule, Simple applications in structure elucidation (butane, iso-pentane, 2butanol, ethyl proplylamine, acetone, ethyl methyl ketone, ethyl benzene), McLafferty rearrangement (butanal and pentanal).

F ...

n

B-4

E.

Page 24 of 29

Chem H 603

Physical Chemistry

Unit I: Thermodynamics-III

Thermodynamic scale of temperature, , Maxwell's relations, definition of chemical potential, concept of chemical potential, equilibrium between different phases, derivation of phase rule from the concept of chemical potential, partial molal quantities, variation of chemical potential with temperature and pressure, chemical potential of a component in an ideal mixture, Gibbs-Duhem equation.

Nernst heat theorem, third law of thermodynamics and its application to the determination of entropy, concept of residual entropy.

Unit II: Electrochemistry-III

10 marks

Activity and ionic activity coefficient; mean ionic activity. Ion atmosphere; electrophoretic and relaxation effects; Onsager equation (qualitative); Wien and Debye-Falkenhagen effects; Debye-Huckel theory (qualitative) and the limiting law. Solubility of sparingly soluble salts and ionic strength of medium. Standard cells, concentration cells (with and without transport), liquid junction potentials.EMF of a cell and its measurements. Calculation of thermodynamic parameters (Δ H, Δ G, Δ S and K) from cell EMF, polarization and over potential. Applications of Ag/AgCl, quinhydrone and glass electrodes. potentiometric titrations with examples.

Unit III: Elementary Quantum Mechanics

Failure of classical mechanics: Black-body radiation, Planck's radiation law, photoelectric effect, Compton effect, heat capacity of solids; Postulates of quantum mechanis; Schrodinger wave equation, Model systems (with complete derivation of wavefunction & energy expression): Particlein-one-dimensional-box; quantum numbers and their importance.

Unit IV: Boltzmann Distribution

Idea of mathematical and thermodynamic probability; entropy and probability; Boltzmann distribution (without derivation) for non-degenerate and degenerate cases; application to barometric distribution formula. Molecular partition functions and its significance: translational, rotational, vibrational and electronic partition function.

Page 25 of 29

ني. م ل

9 marks

9 marks

50 Marks (12:38)

10 marks

Chem H 604

PART A: Practical (Inorganic LC-III)

Total: 50 Marks 25 Marks (6:19)

12 marks

Laboratory Course (Inorganic Quantitative Analysis)

Tend Practical Examination Time: 12 hours

Estimation (volumetric or gravimetric) of metal constituents from mixtures of Iron-Calcium, Iron-Copper, Copper-Zinc, Calcium-Barium, Copper-Nickel (separation of one metal constituent must be carried out).

Sessional Work and Viva Voce

	Sessional Work:	2 marks
(27)) (27))	Vina Voce:	5 marks

Chem H 504 PART B: Dissertation

25 Marks

The Description shall be conducted internally by the Department of Chemistry of the respective onlines. The dissertation shall be conducted formally latest by the second week of March of each the Report for the dissertation shall be checked by the external examiner coming for Part A of Chem H 604 before sending the final marks to the exam department.

The Tapic of the dissertation shall be decided by the Department and informed to the student at and 10 (finty) days ahead of the exact date of the dissertation. Each student shall choose a topic in ansultation with the Department. The topics must be from any of the subjects of contemporary meters in Chemistry. Stu dents must submit a Write-up of the dissertation. Marks distribution shall be a follows:

P .:

....

7 marks

1 Presentation :12 marks

Answers : 6 marks

Page 26 of 29

Recommended Text Books for B.Sc. (Chemistry)

A. Inorganic Chemistry

- 1. B.R. Puri, L.R. Sharma and K.C. Kalia, Principles of Inorganic Chemistry, S.L.N. Chand & Co., Jalandhar (2000).
- 2. F.A. Cotton and G. Wilkinson, Basic Advanced Inorganic Chemistry. Wiley Eastern Ltd., New Delhi (1990).
- 3. H.J. Arnikar, Essentials of Nuclear Chemistry, Wiley Eastern Ltd., New Delhi (1999).
- 4. A.I. Vogel (revised by G. Svehla), Qualitative Inorganic Analysis, 7th Ed., Pearson Edu. Asia Ltd., Delhi (2002).
- A.I. Vogel (revised by G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Textbook of Quantitative Chemical Analysis, 5th ed., Addison Wesley Longman, Singapore (1999).
- 6. J.D. Lee, Concise Inorganic Chemistry, 4th ed., ELBS (1994).

References:

- 7. G. Wulfsberg, Inorganic Chemistry, Viva Book Pvt. Ltd., New Delhi .
- 8. R.K. Das, Industrial Chemistry Part I & II, Kalyani Publ., Ludhiana
- 9. S. Usha Rani, Analytical Chemistry, Macmillan, Delhi
- 10. G. Raj, Advanced Inorganic Chemistry, Vol. I & II, Geol Publishing House, Meerut
- 11. G.S. Dhaliwal, G.S. Sangha and P.K. Ralhan, Fundamentals of Environmental Science, Kalyani Publishers, Ludhiana
- 12. N. Dutt and P.K. Dutt, The Environment and its Problems, Sarat Book, Kolkata
- 13. J.N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, Vol. II, S. Chand & Co., New Delhi
- 14. D. Banerjee, Co-ordination Chemistry, Tata MeGraw-Hill, New Delhi
- W.U. Malik, G.D. Tuli, S.K. Bose and R.D. Madan, Selected Topics in Inorganic Chemistry, 6th ed., S. Chand & Co., New Delhi
- 16. B.L. Agarwal and S.K. Agarwal, A Test Book of Inorganic Chemistry, Ratan Prakashan Mandir, Agra
- 17. Inorganic Chemistry by Keith F Purcell and John C. Kotz, Holt Saunders International edition.
- 18. Inorganic Chemistry by J. E. Huheey, E.A keiter and R L Keiter, Pearson education Asia
- 19. Inorganic Chemistry by Shiver and Atkin Oxford University press.

Page 27 of 29

3

E. Organic Chemistry

- L B.S. Bahl and A. Bahl, Advanced Organic Chemistry, S. Chand & Co., New Delhi
- R.T. Morrison and R.N. Boyd, Organic Chemistry, 5th edn., Prentice-Hall of India, New Delhi.
- 3. S.M. Mukherjee, S.P. Singh and R.P. Kappor, Organic Chemistry, Vol I, II & III, Wiley Eastern Ltd., New Delhi.
- 4 SM Mukherjee and S.P. Singh, Reactions Mechanism in Organic Chemsitry, MacmIllan
- 5. Y.R. Sharma, Organic Absorption Spectroscopy, S. Chand & Co., Delhi .
- AL Vogel, A Text Book of Practical Organic Chemistry, Longmans .
- 1. 41 Introduction to Green Chemistry By V kumar Vishal Publishing Co. Jalandhar
- 1. Chemistry of Organic Natural products Vol. I. by O P Agarwal, Goel Publishing House Meerut.
- Modern Organic Chemistry By M K Jain and S C Sharma Vishal Publishing Co. Jalandhar

References

- D I. March, Advanced Organic Chemistry, 3rd ed., McGraw Hill, New York .
- 11 L. Finar, Organic Chemistry, Vol. I & H, 5th ed., Pearson Edu. Ltd., Delhi . .
- G. Marc Loudon, Organic Chemistry, Oxford Univ. Press .
- Capiten, N. Greeves, S. Warren and P. Wothers, Organic Chemistry, Oxford Univ. Press .
- PS Kalsi, Stereochemistry, 4th ed., New Age International, New Delhi .
- PS Rels, Spectroscopy of Organic Compounds, 4th ed., New Age International, New Delhi

P :-

- **PS Kalsi,** Organic Reactions and their Mechanism, 4th ed., New Age International, New Delbi
- Designari, Stereochemistry, 2nd ed., New Age International, New Delhi.
- T & G. Selemons, Organic Chemistry, 6th ed., John Wiley & Sons.

Page 28 of 29

C. Physical Chemistry

- 1. P. Atkins and de Paula, Atkins' Physical Chemistry, 7th ed., Oxford Univ. Press .
- 2. P.C. Rakshit (revised by S.C. Rakshit), Physical Chemistry, 6th ed., Sarat Book, Kolkata .
- 3. B.R. Puri, L.R. Sharma and M.S. Pathania, Principles of Physical Chemsitry, S.L. N. Chand & Co., Jalandhar .
- 4. V. D. Athawale and P.Mathur, Experimental Physical Chemistry, New Age International Publ., New Delhi
- 5. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, Vol.I,S. Chand & Co., New Delhi .

Reference:

- 6. G. Raj, Advanced Physical Chemistry, Goel Pub. House, Meerut .
- 7. R.S. Barry, S.A. Rice and J. Ross, Physical Chemistry, Oxford Univ. Press .
- 8. D.A. McQuarries and J.D. Simon, Physical Chemistry, Viva Books Pvt. Ltd., New Delhi .
- 9. G. W. Castellan, Physical Chemistry, Narosa Pub. House, Delhi .
- 10. S. Glasstone, Textbook of Physical Chemistry, Macmillan India Ltd., Madras .
- 11. W. J. Moore, Basic Physical Chemistry, Prentice Hall of India, New Delhi .
- 12. G. M. Barrow, Physical Chemistry, McGraw Hill, New York .
- 13. R. A. Alberty, Physical Chemistry 6th ed., Wiley Eastern Ltd., New Delhi
- 14. A. S. Negi and S. C. Annad, A Textbook of Physical Chemistry, Wiley Eastern Ltd., New Delhi.
- 15. S. Glasstone, An Introduction of Electrochemistry, (Reprint), Affiliated East- West Press, New Delhi.

8-1

F .- 1

- 16. J. B. Yadav, Advanced Practical Physical Chemistry, 20th ed., Goel Publ. House, Meerut
- 17. Quantum Chemistry P. Atkins Oxford University Press

Page 29 of 29